EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC²-RAG) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at \url{https://anonymous.4open.science/r/EDC-2-RAG-5F54}.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Dub-S2ST: Textless Speech-to-Speech Translation for Seamless Dubbing
poster

Dub-S2ST: Textless Speech-to-Speech Translation for Seamless Dubbing

EMNLP 2025

Jeongsoo Choi and 2 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved