Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
For individuals who have experienced traumatic events such as strokes, speech may no longer be a viable means of communication. While text-to-speech (TTS) can be used as a communication aid since it generates synthetic speech, it fails to preserve the user’s own voice. As such, face-to-voice (FTV) synthesis, which derives corresponding voices from facial images, provides a promising alternative. However, existing methods rely on pre-trained visual encoders, and finetune them to align with speech embeddings, which strips fine-grained information from facial inputs such as gender or ethnicity, despite their known correlation with vocal traits. Moreover, these pipelines are multi-stage, which requires separate training of multiple components, thus leading to training inefficiency. To address these limitations, we utilize fine-grained facial attribute modeling by decomposing facial images into non-overlapping segments and progressively integrating them into a multi-granular representation. This representation is further refined through multi-task learning of speaker attributes such as gender and ethnicity at both the visual and acoustic domains. Moreover, to improve alignment robustness, we adopt a multi-view training strategy by pairing various visual perspectives of a speaker in terms of different angles and lighting conditions, with identical speech recordings. Extensive subjective and objective evaluations confirm that our approach substantially enhances face-voice congruence and synthesis stability.