Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
Short texts pose significant challenges for clustering due to semantic sparsity, limited context, and fuzzy category boundaries. Although recent contrastive learning methods improve instance-level representation, they often overlook local semantic structure within the clustering head. Moreover, treating semantically similar neighbors as negatives impair cluster-level discrimination. To address these issues, we propose Fuzzy Neighborhood-Aware Self-Supervised Contrastive Clustering (FNSCC) framework. FNSCC incorporates neighborhood information at both the instance-level and cluster-level. At the instance-level, it excludes neighbors from the negative sample set to enhance inter-cluster separability. At the cluster-level, it introduces fuzzy neighborhood-aware weighting to refine soft assignment probabilities, encouraging alignment with semantically coherent clusters. Experiments on multiple benchmark short text datasets demonstrate that FNSCC consistently outperforms state-of-the-art models in accuracy and normalized mutual information. Our code is available at \url{https://anonymous.4open.science/r/FNSCC-E6FC}.