EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large Vision-Language Models (LVLMs) have achieved strong performance on vision-language tasks, particularly Visual Question Answering (VQA). While prior work has explored unimodal biases in VQA, the problem of selection bias in Multiple-Choice Question Answering (MCQA)—where models may favor specific option tokens (e.g., "A") or positions—remains underexplored. In this paper, we investigate both the presence and nature of selection bias in LVLMs through fine-grained MCQA benchmarks spanning easy, medium, and hard difficulty levels, defined by the semantic similarity of distractors. We further propose an inference-time logit-level debiasing method that estimates an ensemble bias vector from general and contextual prompts and applies confidence-adaptive corrections to the model’s output. Our method mitigates bias without retraining and is compatible with frozen LVLMs. Extensive experiments across several state-of-the-art models reveal consistent selection biases that intensify with task difficulty, and show that our mitigation approach significantly reduces bias while improving accuracy in challenging settings. This work offers new insights into the limitations of LVLMs in MCQA and presents a practical approach to improve their robustness in fine-grained visual reasoning.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Toward Machine Translation Literacy: How Lay Users Perceive and Rely on Imperfect Translations
poster

Toward Machine Translation Literacy: How Lay Users Perceive and Rely on Imperfect Translations

EMNLP 2025

+5
Calvin Bao and 7 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved