EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large language models (LLMs) have shown significant potential to improve diagnostic performance for healthcare professionals. Existing multi-agent paradigms rely mainly on prompt engineering, suffering from improper agent selection and insufficient knowledge integration. In this work, we propose a novel framework KACR (Knowledge-Aware Co-Reasoning) that integrates structured knowledge reasoning into multidisciplinary collaboration from two aspects: (1) a reinforcement learning-optimized agent that uses clinical knowledge graphs to guide dynamic discipline determination; (2) a multidisciplinary collaboration strategy that enables robust consensus through integration of domain-specific expertise and interdisciplinary persuasion mechanism. Extensive experiments conducted on both academic and real-world datasets demonstrate the effectiveness of our method.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

SSA: Semantic Contamination of LLM-Driven Fake News Detection
poster

SSA: Semantic Contamination of LLM-Driven Fake News Detection

EMNLP 2025

+2
Shuhao Guan and 4 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved