EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Detoxification in large language models (LLMs) remains a significant research challenge. Existing decoding detoxification methods are all based on external constraints, which require additional resource overhead and lose generation fluency. This work innovatively proposes Detoxification with Self-Constrained Decoding (DSCD), a novel method for LLMs detoxification without parameter fine-tuning. DSCD strengthens the inner token distribution of the safety layer while weakening that of hallucination and toxic layer during output generation. This effectively diminishes toxicity and enhances output safety. DSCD offers lightweight, high compatibility, and plug-and-play capabilities, readily integrating with existing detoxification methods for further performance improvement. Extensive experiments on representative open-source LLMs and public datasets validate DSCD’s effectiveness, demonstrating state-of-the-art (SOTA) performance in both detoxification and generation fluency, with superior efficiency compared to existing methods. These results highlight DSCD’s potential as a practical and scalable solution for safer LLM deployments.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

End-to-End Learnable Psychiatric Scale Guided Risky Post Screening for Depression Detection on Social Media
poster

End-to-End Learnable Psychiatric Scale Guided Risky Post Screening for Depression Detection on Social Media

EMNLP 2025

+3Bing Qin
Bing Qin and 5 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved