EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Detecting depression through users' social media posting history is crucial for enabling timely intervention; however, irrelevant content within these posts negatively impacts detection performance. Thus, it is crucial to extract pertinent content from users' complex posting history. Current methods utilize frozen screening models, which can miss critical information and limit overall performance due to isolated screening and detection processes. To address these limitations, we propose E2-LPS End-to-End Learnable Psychiatric Scale Guided Risky Post Screening Model) for jointly training our screening model, guided by psychiatric scales, alongside the detection model. We employ a straight-through estimator to enable a learnable end-to-end screening process and avoid the non-differentiability of the screening process. Experimental results show that E2-LPS outperforms several strong baseline methods, and qualitative analysis confirms that it better captures users' mental states than others.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Mitigating Biases in Language Models via Bias Unlearning
poster

Mitigating Biases in Language Models via Bias Unlearning

EMNLP 2025

+1
Guoqing Jin and 3 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved