profile picture

Pin-Yu Chen

language models

multilingual

privacy

watermark

code embeddings

large language model

llm

svd

model merging

foundation models; model reprogramming; transfer learning

3

presentations

14

number of views

SHORT BIO

Dr. Pin-Yu Chen is a principal research scientist at IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA. He is also the chief scientist of RPI-IBM AI Research Collaboration and PI of ongoing MIT-IBM Watson AI Lab projects. Dr. Chen received his Ph.D. in electrical engineering and computer science from the University of Michigan, Ann Arbor, USA, in 2016. Dr. Chen’s recent research focuses on adversarial machine learning of neural networks for robustness and safety. His long-term research vision is to build trustworthy machine learning systems. He received the IJCAI Computers and Thought Award in 2023. He is a co-author of the book “Adversarial Robustness for Machine Learning”. At IBM Research, he received several research accomplishment awards, including IBM Master Inventor, IBM Corporate Technical Award, and IBM Pat Goldberg Memorial Best Paper. His research contributes to IBM open-source libraries including Adversarial Robustness Toolbox (ART 360) and AI Explainability 360 (AIX 360). He has published more than 50 papers related to trustworthy machine learning at major AI and machine learning conferences, given tutorials at NeurIPS’22, AAAI(’22,’23,’24), IJCAI’21, CVPR(’20,’21,’23), ECCV’20, ICASSP(’20,’22,’23,’24), KDD’19, and Big Data’18, and organized several workshops for adversarial machine learning. He is currently on the editorial board of Transactions on Machine Learning Research and serves as an Area Chair or Senior Program Committee member for NeurIPS, ICML, AAAI, IJCAI, and PAKDD. He received the IEEE GLOBECOM 2010 GOLD Best Paper Award and UAI 2022 Best Paper Runner-Up Award.

Presentations

Duwak: Dual Watermarks in Large Language Models

Chaoyi Zhu and 3 other authors

Language Agnostic Code Embeddings

Saiteja Utpala and 2 other authors

Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning | VIDEO

Pin-Yu Chen

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved