VIDEO DOI: https://doi.org/10.48448/607k-ts04

technical paper

AAAI 2024

February 26, 2024

Vancouver , Canada

Learn to Follow: Decentralized Lifelong Multi-Agent Pathfinding via Planning and Learning

keywords:

multi-agent pathfinding

heuristic search

reinforcement learning

Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that possesses all the information on the agents' locations and goals is absent and the agents have to sequentially decide the actions on their own without having access to the full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver. The code is available at https://github.com/AIRI-Institute/learn-to-follow.

Downloads

PaperTranscript English (automatic)

Next from AAAI 2024

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
technical paper

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution

AAAI 2024

+2Stefano Ermon
Tailin Wu and 4 other authors

22 February 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved