technical paper

AAAI 2024

February 23, 2024

Vancouver , Canada

Designing Biological Sequences without Prior Knowledge Using Evolutionary Reinforcement Learning

keywords:

natural sciences

reinforcement learning algorithms

applications

bioinformatics

Designing novel biological sequences with desired properties is a significant challenge in biological science because of the extra large search space. The traditional design process usually involves multiple rounds of costly wet lab evaluations. To reduce the need for expensive wet lab experiments, machine learning methods are used to aid in designing biological sequences. However, the limited availability of biological sequences with known properties hinders the training of machine learning models, significantly restricting their applicability and performance. To fill this gap, we present ERLBioSeq, an Evolutionary Reinforcement Learning algorithm for BIOlogical SEQuence design. ERLBioSeq leverages the capability of reinforcement learning to learn without prior knowledge and the potential of evolutionary algorithms to enhance the exploration of reinforcement learning in the large search space of biological sequences. Additionally, to enhance the efficiency of biological sequence design, we developed a predictor for sequence screening in the biological sequence design process, which incorporates both the local and global sequence information. We evaluated the proposed method on three main types of biological sequence design tasks, including the design of DNA, RNA, and protein. The results demonstrate that the proposed method achieves significant improvement compared to the existing state-of-the-art methods.

Downloads

SlidesPaperTranscript English (automatic)

Next from AAAI 2024

Fair Participation via Sequential Policies | VIDEO
technical paper

Fair Participation via Sequential Policies | VIDEO

AAAI 2024

+1Reilly Raab
Reilly Raab and 3 other authors

23 February 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved