Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

EMNLP 2021

November 08, 2021

Live on Underline

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Stance detection, which aims to determine whether an individual is for or against a target concept, promises to uncover public opinion from large streams of social media data. Yet even human annotation of social media content does not always capture "stance" as measured by public opinion polls. We demonstrate this by directly comparing an individual's self-reported stance to the stance inferred from their social media data. Leveraging a longitudinal public opinion survey with respondent Twitter handles, we conducted this comparison for 1,129 individuals across four salient targets. We find that recall is high for both "Pro" and "Anti"’ stance classifications but precision is variable in a number of cases. We identify three factors leading to the disconnect between text and author stance: temporal inconsistencies, differences in constructs, and measurement errors from both survey respondents and annotators. By presenting a framework for assessing the limitations of stance detection models, this work provides important insight into what stance detection truly measures.

Downloads

SlidesPaper

Next from EMNLP 2021

Identifying Morality Frames in Political Tweets using Relational Learning
poster

Identifying Morality Frames in Political Tweets using Relational Learning

EMNLP 2021

Maria PachecoDan GoldwasserShamik Roy
Shamik Roy and 2 other authors

08 November 2021

Similar lecture

Toward Diverse Precondition
workshop paper

Toward Diverse Precondition

ACL-IJCNLP 2021

Nathanael ChambersNiranjan BalasubramanianHeeyoung Kwon
Heeyoung Kwon and 2 other authors

02 August 2021

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved