
Premium content
Access to this content requires a subscription. You must be a premium user to view this content.

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
keywords:
time expression recognition
negation detection
machine learning
domain adaptation
information extraction
This paper presents the Source-Free Domain Adaptation shared task held within SemEval-2021. The aim of the task was to explore adaptation of machine-learning models in the face of data sharing constraints. Specifically, we consider the scenario where annotations exist for a domain but cannot be shared. Instead, participants are provided with models trained on that (source) data. Participants also receive some labeled data from a new (development) domain on which to explore domain adaptation algorithms. Participants are then tested on data representing a new (target) domain. We explored this scenario with two different semantic tasks: negation detection (a text classification task) and time expression recognition (a sequence tagging task).