IJCNLP-AACL 2025

December 20, 2025

Mumbai, India

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

keywords:

knowledge-augmented methods

generative models

graph-based methods

representation learning

word embeddings

few-shot learning

data augmentation

Effective tool pre-selection via retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and tool retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average CompleteRecall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information modeled in the graph provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.

Downloads

SlidesTranscript English (automatic)

Next from IJCNLP-AACL 2025

Formalizing Test-Time Compute for Function-Level Code Generation

Formalizing Test-Time Compute for Function-Level Code Generation

IJCNLP-AACL 2025

+1Haau-Sing LiIryna GurevychPatrick Fernandes
Patrick Fernandes and 3 other authors

20 December 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved