EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Although offensive language continually evolves overtime, even recent studies using LLMs have predominantly relied on outdated datasets and rarely evaluated the generalization ability on unseen texts. In this study, we constructed a large-scale dataset of contemporary political discourse and employed three refined judgments in the absence of ground truth. Each judgment reflects a representative offensive language detection method and is carefully designed for optimal conditions. We identified distinct patterns for each judgment and demonstrated tendencies of label agreement using a leave-one-out strategy. By establishing pseudo-labels as ground trust for quantitative performance assessment, we observed that a strategically designed single prompting achieves comparable performance to more resource-intensive methods. This suggests a feasible approach applicable in real-world settings with inherent constraints.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Refined Assessment for Translation Evaluation: Rethinking Machine Translation Evaluation in the Era of Human-Level Systems
poster

Refined Assessment for Translation Evaluation: Rethinking Machine Translation Evaluation in the Era of Human-Level Systems

EMNLP 2025

+3
Ekaterina Enikeeva and 5 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved