EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Expanding the long-context capabilities of Multi-modal Large Language Models (MLLMs) is critical for advancing video understanding and high-resolution image analysis. Achieving this requires systematic improvements in model architecture, data construction, and training strategies, particularly to address challenges such as performance degradation with increasing image counts and high computational costs. In this paper, we propose a hybrid architecture that integrates Mamba and Transformer blocks, introduce data construction methods that capture both temporal and spatial dependencies, and employ a progressive training strategy. Our released model, LongLLaVA (Long-Context Large Language and Vision Assistant), demonstrates an effective balance between efficiency and performance. LongLLaVA achieves competitive results across various benchmarks while maintaining high throughput and low memory consumption. Notably, it can process nearly one thousand images on a single A100 80GB GPU, underscoring its potential for a wide range of multi-modal applications.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Evaluating Uncertainty Quantification Methods in Argumentative Large Language Models
poster

Evaluating Uncertainty Quantification Methods in Argumentative Large Language Models

EMNLP 2025

+3Lihu Chen
Lihu Chen and 5 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved