EMNLP 2025

November 06, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

The behavior of Large Language Models (LLMs) when facing contextual information that conflicts with their internal parametric knowledge is inconsistent, with no generally accepted explanation for the expected outcome distribution. Recent work has identified in autoregressive transformer models a class of neurons -- called textitentropy neurons -- that produce a significant effect on the model output entropy while having an overall moderate impact on the ranking of the predicted tokens. In this paper, we investigate the preliminary claim that these neurons are involved in inhibiting context copying behavior in transformers by looking at their role in resolving conflicts between contextual and parametric information. We show that textitentropy neurons are responsible for suppressing context copying across a range of LLMs, and that ablating them leads to a significant change in the generation process. These results enhance our understanding of the internal dynamics of LLMs when handling conflicting information.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling
poster

A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling

EMNLP 2025

+9Farnoosh Hashemi
Joice Chen and 11 other authors

06 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved