EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Recent computational work typically frames morphophonology as generating surface forms (SFs) from abstract underlying representations (URs) by applying phonological rules or constraints. This generative stance presupposes that every morpheme has a well-defined UR from which all allomorphs can be derived, a theory-laden assumption that is expensive to annotate, especially in low-resource settings. We adopt an alternative view. Allomorphs and their phonological variants are treated as the basic, observed lexicon, not as outputs of abstract URs. The modeling task therefore shifts from deriving SFs to selecting the correct SF, given a meaning and a phonological context. This discriminative formulation removes the need to posit or label URs and lets the model exploit the surface evidence directly.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

CoViPAL: Layer-wise Contextualized Visual Token Pruning for Large Vision-Language Models
poster

CoViPAL: Layer-wise Contextualized Visual Token Pruning for Large Vision-Language Models

EMNLP 2025

+5Zuchao Li
Yun Li and 7 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved