EMNLP 2025

November 06, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

As language models have a greater impact on society, it is important to ensure they are aligned to a diverse range of perspectives and are able to reflect nuance in human values. However, the most popular training paradigms for modern language models often assume there is one optimal answer for every query, leading to generic responses and poor alignment. In this work, we aim to enhance pluralistic alignment of language models in a low-resource setting with two methods: pluralistic decoding and model steering. We empirically demonstrate that model steering offers consistent improvement over zero-shot and few-shot baselines with only 50 annotated samples. Our proposed methods decrease false positives in several high-stakes tasks such as hate speech detection and misinformation detection, and improves the distributional alignment to human values from different demographics. We hope our work highlights the importance of diversity and how language models can be adapted to consider nuanced perspectives.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

One More Question is Enough, Expert Question Decomposition (EQD) Model for Domain Quantitative Reasoning
poster

One More Question is Enough, Expert Question Decomposition (EQD) Model for Domain Quantitative Reasoning

EMNLP 2025

+2Shay Cohen
Miguel de Carvalho and 4 other authors

06 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved