EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Recent Large Reasoning Models (LRMs) with thinking traces have shown strong performance on English reasoning tasks. However, the extent to which LRMs can think in other languages is less studied. This is as important as answer accuracy for real-world applications since users may find the thinking trace useful for oversight only if expressed in their languages. In this work, we comprehensively evaluate two leading families of LRMs on our established benchmark XReasoning. Surprisingly, even the most advanced models often revert to English or produce fragmented reasoning in other languages, revealing a substantial gap in the capability of thinking in non-English languages. Promoting models to reason in the user's language via prompt hacking enhances readability and oversight. This could gain user trust, but reduces answer accuracy, exposing an important trade-off. We further demonstrate that targeted post-training, even with just 100 instances, can mitigate this language mismatch, although accuracy is still degraded. Our results reveal the limited multilingual reasoning capabilities of current LRMs and suggest directions for future research. All code and datasets released at https://Anonymous.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

ProtoXTM: Cross-Lingual Topic Modeling with Document-Level Prototype-based Contrastive Learning
poster

ProtoXTM: Cross-Lingual Topic Modeling with Document-Level Prototype-based Contrastive Learning

EMNLP 2025

승원 서 and 1 other author

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved