EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

ClusterUCB: Efficient Gradient-Based Data Selection for Targeted Fine-Tuning of LLMs
poster

ClusterUCB: Efficient Gradient-Based Data Selection for Targeted Fine-Tuning of LLMs

EMNLP 2025

+3Fei Mi
Ruochun Jin and 5 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved