EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large Language Models (LLMs) typically rely on a large number of parameters for token embedding, leading to substantial storage requirements and memory footprints. In particular, LLMs deployed on edge devices are memory-bound, and reducing the memory footprint by compressing the embedding layer not only frees up the memory bandwidth but also speeds up inference. To address this, we introduce CARVQ, a post-training novel Corrective Adaptor combined with group Residual Vector Quantization. CARVQ relies on the composition of both linear and non-linear maps and mimics the original model embedding to compress to approximately 1.6 bits without requiring specialized hardware to support lower-bit storage. We test our method on pre-trained LLMs such as LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B, Qwen2.5-7B, Qwen2.5-Math-7B and Phi-4, evaluating on common generative, discriminative, math and reasoning tasks. We show that in most cases, CARVQ can achieve lower average bitwidth-per-parameter while maintaining reasonable perplexity and accuracy compared to scalar quantization. Our contributions include a novel compression technique that is compatible with state-of-the-art transformer quantization methods and can be seamlessly integrated into any hardware supporting 4-bit memory to reduce the model's memory footprint in memory-constrained devices. This work demonstrates a crucial step toward the efficient deployment of LLMs on edge devices.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Internal states before wait modulate reasoning patterns
poster

Internal states before wait modulate reasoning patterns

EMNLP 2025

+1
Callum Stuart McDougall and 3 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved