Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
LLMs have been widely adopted to tackle many traditional NLP tasks. Their effectiveness remains uncertain in scenarios where pre-trained models have limited prior knowledge of a language. In this work, we examine LLMs' generalization in under-resourced settings through the task of orthographic normalization across Otomi language variants. We develop two approaches: a rule-based method using a finite-state transducer (FST) and an in-context learning (ICL) method that provides the model with string transduction examples. We compare the performance of FSTs and neural approaches in low-resource scenarios, providing insights into their potential and limitations. Our results show that while FSTs outperform LLMs in zero-shot settings, ICL enables LLMs to surpass FSTs, stressing the importance of combining linguistic expertise with machine learning in current approaches for low-resource scenarios