EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

As Large Language Models (LLMs) gain expertise across diverse domains and modalities, scalable oversight becomes increasingly challenging, particularly when their capabilities may surpass human evaluators. Debate has emerged as a promising mechanism for enabling such oversight. In this work, we extend the debate paradigm to a multimodal setting, exploring its potential for weaker models to supervise and enhance the performance of stronger models. We focus on visual question answering (VQA), where two "sighted" expert vision-language models debate an answer, while a "blind" (text-only) judge adjudicates based solely on the quality of the arguments. In our framework, the experts defend only answers aligned with their beliefs, thereby obviating the need for explicit role-playing and concentrating the debate on instances of expert disagreement. Experiments on several multimodal tasks demonstrate that the debate framework consistently outperforms individual expert models. Moreover, judgments from weaker LLMs can help instill reasoning capabilities in vision-language models through finetuning.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

MRFD: Multi-Region Fusion Decoding with Self-Consistency for Mitigating Hallucinations in LVLMs
poster

MRFD: Multi-Region Fusion Decoding with Self-Consistency for Mitigating Hallucinations in LVLMs

EMNLP 2025

+1Haonan Ge
Yujun Cai and 3 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved