EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Recent advances in Large Language Model (LLM)-based Role-Playing Language Agents (RPLAs) have attracted broad attention in various applications. While chain-of-thought reasoning has shown importance in many tasks for LLMs, the internal thinking processes of RPLAs remain unexplored. Understanding characters’ inner thoughts is crucial for developing advanced RPLAs. In this paper, we introduce ROLETHINK, a novel benchmark constructed from literature for evaluating character thought generation. We propose the task of inner thought reasoning, constructing 6,058 data entries from 76 books, which includes two sets: the gold set that compares generated thoughts with original character monologues, and the silver set that uses expert-synthesized character analyses as references. To address this challenge, we propose MIRROR, a chain-of-thought approach that generates character thoughts by retrieving memories, predicting character reactions, and synthesizing motivations. Through extensive experiments, we demonstrate the importance of inner thought reasoning for RPLAs, and MIRROR consistently outperforms existing methods.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding
poster

X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding

EMNLP 2025

+8
Kai Cao and 10 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved