EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large language models (LLMs) have been used to synthesize persuasive dialogues for studying persuasive behavior. However, existing approaches often suffer from issues such as stance oscillation and low informativeness. To address these challenges, we propose reinforced instructional prompting, a method that ensures speaker characteristics consistently guide all stages of dialogue generation. We further introduce multilingual prompting, which aligns language use with speakers’ native languages to better capture cultural nuances. Our experiments involving speakers from eight countries show that continually reinforcing speaker profiles and cultural context improves argument diversity, enhances informativeness, and stabilizes speaker stances. Moreover, our analysis of inter-group versus intra-group persuasion reveals that speakers engaging within their own cultural groups employ more varied persuasive strategies than in cross-cultural interactions. These findings underscore the importance of speaker and cultural awareness in LLM-based persuasion modeling and suggest new directions for developing more personalized, ethically grounded, and culturally adaptive LLM-generated dialogues.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Efficient Layer-wise LLM Fine-tuning for Revision Intention Prediction
poster

Efficient Layer-wise LLM Fine-tuning for Revision Intention Prediction

EMNLP 2025

Zhexiong LiuDiane Litman
Diane Litman and 1 other author

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved