EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Augmenting neural machine translation with external memory at decoding time, in the form of k-nearest neighbors machine translation (k-NN MT), is a well-established strategy for increasing translation performance. k-NN MT retrieves, at the token level, a set of tokens that occurred in the most similar contexts recorded in a prepared data store, using hidden state representations of translation contexts as vector lookup keys. One of the main disadvantages of this method is the high computational cost and memory requirements. Since an exhaustive search is not feasible in large data stores practitioners commonly use approximate k-NN lookup, yet even such algorithms are a bottleneck. In contrast to research directions seeking to accelerate k-NN MT by reducing data store size or the number of lookup calls, we pursue an orthogonal direction based on the performance properties of approximate k-NN lookup data structures. In particular, we propose encouraging angular dispersion of the neural hidden representations of contexts. We show that improving dispersion leads to better balance in the retrieval data structures, accelerating retrieval and slightly improving translations.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment
poster

SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment

EMNLP 2025

+9
Enhong Chen and 11 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved