EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

In specialized domains such as space science and utilization, question answering (QA) systems are required to perform complex multi-fact reasoning over sparse knowledge graphs (KGs). Existing KG-based retrieval-augmented generation (RAG) frameworks often face challenges such as inefficient subgraph retrieval, limited reasoning capabilities, and high computational costs. These issues limit their effectiveness in specialized domains. In this paper, we propose SKRAG, a novel Skeleton-guided RAG framework for knowledge graph question answering (KGQA). SKRAG leverages a lightweight language model enhanced with the Finite State Machine (FSM) constraint to produce structurally grounded reasoning skeletons, which guide accurate subgraph retrieval. The retrieved subgraph is then used to prompt a general large language model (LLM) for answer generation. We also introduce SSUQA, a KGQA dataset in the space science and utilization domain. Experiments show that SKRAG outperforms strong baselines on SSUQA and two general-domain benchmarks, demonstrating its adaptability and practical effectiveness.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

DeMAC: Enhancing Multi-Agent Coordination with Dynamic DAG and Manager-Player Feedback
poster

DeMAC: Enhancing Multi-Agent Coordination with Dynamic DAG and Manager-Player Feedback

EMNLP 2025

+6
Feiyu Chen and 8 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved