EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Recent Large Reasoning Models (LRMs) have demonstrated the ability to generate long chains of thought (LongCoT) before arriving at a final conclusion. Despite remarkable breakthroughs in complex reasoning capabilities, LongCoT still faces challenges such as redundancy and logical incoherence. To address these issues, we aim to equip large language models (LLMs) with rigorous and concise logical reasoning capabilities. In this work, we propose Logic-Thinker, a neural-symbolic reasoning framework that employs symbolic solvers to precisely solve problems and transforms their internal solving processes into concise and rigorous chains of thought, referred to as ThinkerCoT. Our experimental results demonstrate that Logic-Thinker achieves state-of-the-art performance in logical reasoning problems. Additionally, LLMs fine-tuned with ThinkerCoT outperform models distilled from QwQ32B on logic reasoning tasks, achieving an overall accuracy improvement of 3.6% while reducing token output by 73%-91%. Furthermore, ThinkerCoT enhances the comprehensive reasoning capabilities of LLMs, as evidenced by performance improvements on reasoning benchmarks such as GPQA and AIME.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

ACEBench: A Comprehensive Evaluation of LLM Tool Usage
poster

ACEBench: A Comprehensive Evaluation of LLM Tool Usage

EMNLP 2025

+8Chen Chen
Chen Chen and 10 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved