EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Schemas are vital for ensuring data quality in the Semantic Web and natural language processing. Traditionally, their creation demands substantial involvement from knowledge engineers and domain experts. Leveraging the impressive capabilities of large language models (LLMs) in related tasks like ontology engineering, we explore automatic schema generation using LLMs. To bridge the resource gap, we introduce two datasets: YAGO Schema and Wikidata EntitySchema, along with evaluation metrics. The LLM-based pipelines effectively utilize local and global information from knowledge graphs (KGs) to generate validating schemas in Shape Expressions (ShEx). Experiments demonstrate LLMs' strong potential in producing high-quality ShEx schemas, paving the way for scalable, automated schema generation for large KGs. Furthermore, our benchmark introduces a new challenge for structured generation, pushing the limits of LLMs on syntactically rich formalisms.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Idola Tribus of AI: Large Language Models tend to perceive order where none exists
poster

Idola Tribus of AI: Large Language Models tend to perceive order where none exists

EMNLP 2025

+1
Shin-nosuke Ishikawa and 3 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved