EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Event argument extraction identifies arguments for predefined event roles in text. Traditional evaluations rely on exact match (EM), requiring predicted arguments to match annotated spans exactly. However, this approach fails for generative models like large language models (LLMs), which produce diverse yet semantically accurate responses. EM underestimates performance by disregarding valid variations, implicit arguments (unstated but inferable), and scattered arguments (distributed across a document). To bridge this gap, we introduce Reliable Evaluation framework for Generative event argument extraction (REGen), a framework that better aligns with human judgment. Across six datasets, REGen improves performance by an average of 23.93 F1 points over EM. Human validation further confirms REGen’s effectiveness, achieving 87.67% alignment with human assessments of argument correctness.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs
poster

FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs

EMNLP 2025

Debarpan Bhattacharya
Debarpan Bhattacharya and 2 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved