Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
As texts generated by Large Language Models (LLMs) are ever more common and often indistinguishable from human-written content, research on automatic text detection has attracted growing attention. Many recent detectors report near-perfect accuracy, often boasting AUROC scores above 99\%. However, these claims typically assume fixed generation settings, leaving open the question of how robust such systems are to changes in decoding strategies. In this work, we systematically examine how sampling-based decoding impacts detectability, with a focus on how subtle variations in a model’s (sub)word-level distribution affect detection performance. We find that even minor adjustments to decoding parameters - such as temperature, top-p, or nucleus sampling - can severely impair detector accuracy, with AUROC dropping from near-perfect levels to 1\% in some settings. Our findings expose critical blind spots in current detection methods and emphasize the need for more comprehensive evaluation protocols. To facilitate future research, we release a large-scale dataset encompassing 37 decoding configurations, along with our code and evaluation framework.