EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Aligning large language models (LLMs) with specific task objectives is challenging, especially when access to feedback signals for guiding the model is limited. While existing parametric methods perform reasonably, they rely heavily on large datasets and frequent feedback, making them impractical in scenarios with limited human feedback. We introduce Alignment Learning with Episodic Control (ALEC), a non-parametric framework that aligns LLM outputs during inference without fine-tuning. ALEC employs a key-value memory to store the associations between generated text and its corresponding values. It leverages a novel confidence-based writing scheme to update these stored values, maximizing the use of available data. During inference, ALEC utilizes a nearest-neighbor mechanism to estimate the values of generated texts, enabling the selection of the optimal text for decoding. Our method outperforms state-of-the-art baselines on harmless, helpful, and summarization tasks, demonstrating improved alignment with minimal interactions with the true reward model.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
poster

3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation

EMNLP 2025

+3
Jiho Choi and 5 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved