EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Code Large Language Models (Code LLMs) have opened a new era in programming with their impressive capabilities. However, recent research has revealed critical limitations in their ability to reason about runtime behavior and understand the actual functionality of programs, which poses significant challenges for their post-training and practical deployment. Specifically, Code LLMs encounter two principal issues: (1) a lack of proficiency in reasoning about program execution behavior, as they struggle to interpret what programs actually do during runtime, and (2) inconsistent and fragmented representation of semantic information, such as execution traces, across existing methods, which hinders their ability to generalize and reason effectively. These challenges underscore the necessity for more systematic approaches to enhance the reasoning capabilities of Code LLMs. To address these issues, we introduce a generic framework to support integrating semantic information~(e.g., execution trace) to code task-relevant prompts, and conduct a comprehensive study to explore the role of semantic information in enhancing the reasoning ability of Code LLMs accordingly. Specifically, we focus on investigating the usefulness of trace-based semantic information in boosting supervised fine-tuning(SFT) and post-phase inference of Code LLMs. The experimental results surprisingly disagree with previous works and demonstrate that semantic information has limited usefulness for SFT and test time scaling of Code LLM.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis
poster

CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis

EMNLP 2025

+4Jialong TangFei Huang
Fei Huang and 6 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved