EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

As large language models (LLMs) become increasingly integrated into personal writing tools, a critical question arises: Can they faithfully imitate an individual’s writing style from just a few examples? Personal style is often subtle and implicit, making it difficult to specify through prompts yet essential for user-aligned generation. This work presents a comprehensive evaluation of state-of-the-art LLMs’ ability to mimic personal writing styles via in-context learning from a small number of user-authored samples. We introduce an ensemble of complementary metrics—including authorship attribution, style matching, and AI detection—to robustly assess style imitation. Our evaluation spans over 40,000 generations per model across domains such as news, email, forums, and blogs, covering writing samples from more than 400 real-world authors. Results show that while LLMs can approximate user style in structured formats like news and email, they struggle with nuanced, informal writing in blogs and forums. Further analysis on various prompting strategies such as number of demonstrations reveal key limitations in effective personalization. Our findings highlight a fundamental gap in personalized LLM adaptation and the need for improved techniques to support implicit, style-consistent generation.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

HighMATH: Evaluating Math Reasoning of Large Language Models in Breadth and Depth
poster

HighMATH: Evaluating Math Reasoning of Large Language Models in Breadth and Depth

EMNLP 2025

+7
Yongqi Leng and 9 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved