EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Conceptual spaces represent entities and concepts using cognitively meaningful dimensions, typically referring to perceptual features. Such representations are widely used in cognitive science and have the potential to serve as a cornerstone for explainable AI. Unfortunately, they have proven notoriously difficult to learn, although recent LLMs appear to capture the required perceptual features to a remarkable extent. Nonetheless, practical methods for extracting the corresponding conceptual spaces are currently still lacking. While various methods exist for extracting embeddings from LLMs, extracting conceptual spaces also requires us to encode the underlying features. In this paper, we propose a strategy in which features (e.g. sweetness) are encoded by embedding the description of a corresponding prototype (e.g. a very sweet food). To improve this strategy, we fine-tune the LLM to align the prototype embeddings with the corresponding conceptual space dimensions. Our empirical analysis finds this approach to be highly effective.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Multilingual Data Filtering using Synthetic Data from Large Language Models
poster

Multilingual Data Filtering using Synthetic Data from Large Language Models

EMNLP 2025

+1
Alexandra Birch and 3 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved