EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

The performance of pre-trained Large Language Models (LLMs) is often sensitive to nuances in prompt templates, requiring careful prompt engineering, adding costs in terms of computing and human effort. In this study, we present experiments encompassing multiple LLMs variants of varying sizes aimed at probing their preference with different prompts. Through experiments on Question Answering, we show prompt preference consistency across LLMs of different sizes. We also show that this consistency extends to other tasks, such as Natural Language Inference. Utilizing this consistency, we propose a method to use a smaller model to select effective prompt templates for a larger model. We show that our method substantially reduces the cost of prompt engineering while consistently matching performance with optimal prompts among candidates. More importantly, our experiment shows the efficacy of our strategy across fourteen LLMs and its applicability to a broad range of NLP tasks, highlighting its robustness.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

HARE: an entity and relation centric evaluation framework for histopathology reports
poster

HARE: an entity and relation centric evaluation framework for histopathology reports

EMNLP 2025

+2Yunsoo Kim
Yunsoo Kim and 4 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved