EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large Vision–Language Models (LVLMs) have garnered substantial interest owing to their impressive ability to interpret visual inputs and converse with users.Nevertheless, LVLMs still suffer from object hallucination – generating descriptions for objects that are absent from the image, which undermines reliability and hinders real-world deployment. We propose DAPE-BR, a positional-alignment scheme that (i) preserves the pretrained weight order while globally---- visual–text distances, (ii) embeds an isotropic fused patch-distance metric, and (iii) applies a patch-distance causal mask to enforce spatial causality. Extensive experiments on POPE, MMStar and SQA show that DAPE-BR consistently reduces hallucinations and boosts.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

CtrlNews: LLM-based Multi-Agent Controllable News Writing via Knowledge Gravitational Field
poster

CtrlNews: LLM-based Multi-Agent Controllable News Writing via Knowledge Gravitational Field

EMNLP 2025

+4
Shuiguang Deng and 6 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved