EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Retrieval-Augmented Generation (RAG) has become essential for large-scale code generation, grounding predictions in external code corpora to improve factuality. However, a critical yet underexplored aspect of RAG pipelines is chunking---the process of dividing documents into retrievable units. Existing line-based chunking heuristics often break semantic structures, splitting functions or merging unrelated code, which can degrade generation quality. We propose chunking via Abstract Syntax Trees (cAST), a structure-aware method that recursively breaks large AST nodes into smaller chunks and merges sibling nodes while respecting size limits. This approach generates self-contained, semantically coherent units across programming languages and tasks, improving performance on diverse code generation tasks, e.g., boosting Recall@5 by 4.3 points on RepoEval retrieval and Pass@1 by 2.67 points on SWE-bench generation. Our work highlights the importance of structure-aware chunking for scaling retrieval-enhanced code intelligence.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

LRPLAN: A Multi-Agent Collaboration of Large Language and Reasoning Models for Planning with Implicit & Explicit Constraints
poster

LRPLAN: A Multi-Agent Collaboration of Large Language and Reasoning Models for Planning with Implicit & Explicit Constraints

EMNLP 2025

+1Mausam ⠀
Mausam ⠀ and 3 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved