Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
Large language models (LLMs) commonly risk copyright infringement by reproducing protected content verbatim or with insufficient transformative modifications, posing significant ethical, legal, and practical concerns. Current inference-time safeguards predominantly rely on restrictive refusal-based filters, often compromising the practical utility of these models. To address this, we collaborated closely with intellectual property experts to develop FUA-LLM (Fair Use Aligned Language Models), a legally-grounded framework explicitly designed to align LLM outputs with fair-use doctrine. Central to our method is FairUseDB, a carefully constructed dataset containing 18,000 expert-validated examples covering nine realistic infringement scenarios. Leveraging this dataset, we apply Direct Preference Optimization (DPO) to fine-tune open-source LLMs, encouraging them to produce legally compliant and practically useful alternatives rather than resorting to blunt refusal. Recognizing the shortcomings of traditional evaluation metrics, we propose new measures: Weighted Penalty Utility and Compliance Aware Harmonic Mean (CAH) to balance infringement risk against response utility. Extensive quantitative experiments coupled with expert evaluations confirm that FUA-LLM substantially reduces problematic outputs (up to 20%) compared to state-of-the-art approaches, while preserving real-world usability.