EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

In Embedding Based Retrieval (EBR), Approximate Nearest Neighbor (ANN) algorithms are widely adopted for efficient large-scale search. However, recent studies reveal a query out-of-distribution (OOD) issue, where query and base embeddings follow mismatched distributions, significantly degrading ANN performance. In this work, we empirically verify the generality of this phenomenon and provide a quantitative analysis. To mitigate the distributional gap, we introduce a distribution regularizer into the encoder training objective, encouraging alignment between query and base embeddings. Extensive experiments across multiple datasets, encoders, and ANN indices show that our method consistently improves retrieval performance.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Beyond Single Frames: Can LMMs Comprehend Implicit Narratives in Comic Strip?
poster

Beyond Single Frames: Can LMMs Comprehend Implicit Narratives in Comic Strip?

EMNLP 2025

+8
Qingxiu Dong and 10 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved