EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

In competitive programming task, problem statements are often embedded within elaborate narrative backgrounds, requiring deep understanding of the underlying solutions to successfully complete the tasks. Current code generation models primarily focus on token-level semantic modeling, highly susceptible to distractions from irrelevant narrative statements. Inspired by RAG, retrieving reference code with similar solutions may help enhance model performance on difficult problems. However, existing retrieval models also emphasize surface-level semantic similarity, neglecting the deeper solution-level logical similarities that are critical in competitive programming. Therefore, designing ranking models capable of accurately identifying and retrieving problems and corresponding codes remains an urgent research problem in competitive code generation. In this paper, we propose SolveRank, a solution-aware ranking model empowered by synthetic data for competitive programming tasks. Specifically, we leverage the DeepSeek-R1 model to generate logically equivalent but differently phrased new problems, verified by GPT-4o for solution consistency. Then, we train SolveRank with these as positive samples and BM25/random-retrieved problems as negatives. During inference, SolveRank retrieves relevant problems and corresponding code from the corpus to assist a downstream code generator. Experiments on the xCodeEval dataset demonstrate that SolveRank outperforms SOTA ranking methods in precision and recall metrics, and boosts code generation performance for difficult problems.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

TailorRPA: A Retrieval-Based Framework for Eliciting Personalized and Coherent Role-Playing Agents in General Domain
poster

TailorRPA: A Retrieval-Based Framework for Eliciting Personalized and Coherent Role-Playing Agents in General Domain

EMNLP 2025

Zhenpeng Gao and 2 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved