EMNLP 2025

November 07, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

In natural language processing (NLP) tasks, pure reinforcement learning fine-tuning methods often suffer from inefficient exploration and slow convergence; while supervised fine-tuning (SFT) methods, although efficient in training, have limited performance ceiling and less solid theoretical foundation compared to reinforcement learning. To address efficiency-capability trade-off, we propose the Guess-Think-Answer (GTA) framework that combines the efficiency of SFT with the capability gains of RL in a unified training paradigm. GTA works by having the model first produce a provisional guess (optimized via cross-entropy loss), then reflect on this guess before generating the final answer, with RL rewards shaping both the final output and the format of the entire GTA structure. This hybrid approach achieves both faster convergence than pure RL and higher performance ceiling than pure SFT. To mitigate gradient conflicts between the two training signals, we employ loss masking and gradient constraints. Empirical results on three text classification benchmarks demonstrate that GTA substantially accelerates convergence while outperforming both standalone SFT and RL baselines.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Multilingual Verbalisation of Knowledge Graphs
poster

Multilingual Verbalisation of Knowledge Graphs

EMNLP 2025

+2Claire Gardent
Evan Parker Kelly Chapple and 4 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved