EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Question answering on the hybrid context of tables and text (TATQA) is a critical task, with broad applications in data-intensive domains. However, existing TATQA datasets are limited to English, leading to several drawbacks: (i) They overlook the challenges of multilingual TAT-QA and cannot assess model performance in the multilingual setting. (ii) They do not reflect real-world multilingual scenarios where tables and texts frequently appear in non-English languages. To address the limitations, we propose the first multilingual TATQA dataset (MULTITAT). Specifically, we sample data from 3 mainstream TATQA datasets and translate it into 10 diverse languages. To align the model TATQA capabilities in English with other languages, we develop a baseline, Ours. Experimental results reveal that the performance on non-English data in MULTITAT drops by an average of 19.4% compared to English, proving the necessity of MULTITAT. We further analyze the reasons for this performance gap. Furthermore, Ours outperforms other baselines by an average of 3.3, demonstrating its effectiveness.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

MedEBench: Diagnosing Reliability in Text-Guided Medical Image Editing
poster

MedEBench: Diagnosing Reliability in Text-Guided Medical Image Editing

EMNLP 2025

+2
Zhiyuan Fan and 4 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved