EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

The proliferation of multimodal content on social media presents significant challenges in understanding and moderating complex, context-dependent issues such as misinformation, hate speech, and propaganda. While efforts have been made to develop resources and propose new methods for automatic detection, limited attention has been given to label detection and the generation of explanation-based rationales for predicted labels. To address this challenge, we introduce MemeXplain, an explanation-enhanced dataset for propaganda memes in Arabic and hateful memes in English, making it the first large-scale resource for these tasks. To solve these tasks, we propose a novel multi-stage optimization approach and train Vision-Language Models (VLMs). Our results demonstrate that this approach significantly improves performance over the base model for both label detection and explanation generation, outperforming the current state-of-the-art with an absolute improvement of approximately 3% on ArMeme and 7% on Hateful Memes. For reproducibility and future research, we aim to make the MemeXplain dataset and scripts publicly available.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Quantized but Deceptive? A Multi-Dimensional Truthfulness Evaluation of Quantized LLMs
poster

Quantized but Deceptive? A Multi-Dimensional Truthfulness Evaluation of Quantized LLMs

EMNLP 2025

+5Yao Fu
Yao Fu and 7 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved