EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

As Large Language Models (LLMs) are widely deployed in diverse scenarios, the extent to which they could tacitly spread misinformation emerges as a critical safety concern. Current research primarily evaluates LLMs on explicit false statements, overlooking how misinformation often manifests subtly as unchallenged premises in real-world interactions. We curated EchoMist, the first comprehensive benchmark for implicit misinformation, where false assumptions are embedded in the query to LLMs. EchoMist targets circulated, harmful, and ever-evolving implicit misinformation from diverse sources, including realistic human-AI conversations and social media interactions. Through extensive empirical studies on 15 state-of-the-art LLMs, we find that current models perform alarmingly poorly on this task, often failing to detect false premises and generating counterfactual explanations. We also investigate two mitigation methods, i.e., Self-Alert and RAG, to enhance LLMs' capability to counter implicit misinformation. Our findings indicate that EchoMist remains a persistent challenge and underscore the critical need to safeguard against the risk of implicit misinformation.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Toward Efficient Sparse Autoencoder-Guided Steering for Improved In-Context Learning in Large Language Models
poster

Toward Efficient Sparse Autoencoder-Guided Steering for Improved In-Context Learning in Large Language Models

EMNLP 2025

Julia Hockenmaier
Ikhyun Cho and 1 other author

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved