EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Dehumanization, i.e., denying human qualities to individuals or groups, is a particularly harmful form of hate speech that can normalize violence against marginalized communities. Despite advances in NLP for detecting general hate speech, approaches to identifying dehumanizing language remain limited due to scarce annotated data and the subtle nature of such expressions. In this work, we systematically evaluate four state-of-the-art large language models (LLMs) — Claude, GPT, Mistral, and Qwen — for dehumanization detection. Our results show that only one model—Claude—achieves strong performance (over 80% F₁) under an optimized configuration, while others, despite their capabilities, perform only moderately. Performance drops further when distinguishing dehumanization from related hate types such as derogation. We also identify systematic disparities across target groups: models tend to over-predict dehumanization for some identities (e.g., Gay men), while under-identifying it for others (e.g., Refugees). These findings motivate the need for systematic, group-level evaluation when applying pretrained language models to dehumanization detection tasks.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Trustworthy Medical Question Answering: An Evaluation-Centric Survey
poster

Trustworthy Medical Question Answering: An Evaluation-Centric Survey

EMNLP 2025

+5Pengjie RenRobert E. MercerZhumin Chen
Zhumin Chen and 7 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved