EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

We present a survey of methods for assessing and enhancing the quality of online discussions, focusing on the potential of Large Language Models (LLMs). While online discourses aim, at least in theory, to foster mutual understanding, they often devolve into harmful exchanges, such as hate speech, threatening social cohesion and democratic values. Recent advancements in LLMs enable artificial facilitation agents to not only moderate content, but also actively improve the quality of interactions. Our survey synthesizes ideas from Natural Language Processing (NLP) and Social Sciences to provide (a) a new taxonomy on discussion quality evaluation, (b) an overview of intervention and facilitation strategies, (c) along with a new taxonomy of conversation facilitation datasets, (d) an LLM-oriented roadmap of good practices and future research directions, from technological and societal perspectives.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data
poster

Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data

EMNLP 2025

+7Hui LiuPengfei He
Pengfei He and 9 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved