EMNLP 2025

November 06, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Dialectal data are characterized by linguistic variation that appears small to humans but has a significant impact on the performance of models. This dialect gap has been related to various factors (e.g., data size, economic and social factors) whose impact, however, turns out to be inconsistent. In this work, we investigate factors impacting the model performance more directly: we correlate Tokenization Parity (TP) and Information Parity (IP), as measures of representational biases in pre-trained multilingual models, with the downstream performance. We compare state-of-the-art decoder-only LLMs with encoder-based models across three tasks: dialect classification, topic classification, and extractive question answering, controlling for varying scripts (Latin vs. non-Latin) and resource availability (high vs. low). Our analysis reveals that TP is a better predictor of the performance on tasks reliant on syntactic and morphological cues (e.g., extractive QA), while IP better predicts performance in semantic tasks (e.g., topic classification). Complementary analyses, including tokenizer behavior, vocabulary coverage, and qualitative insights, reveal that the language support claims of LLMs often might mask deeper mismatches at the script or token level.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

A Systematic Analysis of Base Model Choice for Reward Modeling
poster

A Systematic Analysis of Base Model Choice for Reward Modeling

EMNLP 2025

+2
Kian Ahrabian and 4 other authors

07 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved