EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Human infants face a formidable challenge in speech acquisition: mapping extremely variable acoustic inputs into appropriate articulatory movements without explicit instruction. We present a computational model that addresses the acoustic-to-articulatory mapping problem through self-supervised learning. Our model comprises a feature extractor that transforms speech into latent representations, an inverse model that maps these representations to articulatory parameters, and a synthesizer that generates speech outputs. Experiments conducted in both single- and multi-speaker settings reveal that intermediate layers of a pre-trained wav2vec 2.0 model provide optimal representations for articulatory learning, significantly outperforming MFCC features. These representations enable our model to learn articulatory trajectories that correlate with human patterns, discriminate between places of articulation, and produce intelligible speech. Critical to successful articulatory learning are representations that balance phonetic discriminability with speaker invariance -- precisely the characteristics of self-supervised representation learning models. Our findings provide computational evidence consistent with developmental theories proposing that perceptual learning of phonetic categories guides articulatory development, offering insights into how infants might acquire speech production capabilities despite the complex mapping problem they face.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Scalable and Culturally Specific Stereotype Dataset Construction via Human-LLM Collaboration
poster

Scalable and Culturally Specific Stereotype Dataset Construction via Human-LLM Collaboration

EMNLP 2025

Soroush Vosoughi
John J. Guerrerio and 2 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved