EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Recent advancements in tool-augmented large language models have enabled them to interact with external tools, enhancing their ability to perform complex user tasks. However, existing approaches overlook the role of personalisation in guiding tool use. This work investigates how user preferences can be effectively integrated into goal-oriented dialogue agents. Through extensive analysis, we identify key weaknesses in the ability of LLMs to personalise tool use. To this end, we introduce TAPS, a novel solution that enhances personalised tool use by leveraging a structured tagging tool and an uncertainty-based tool detector. TAPS significantly improves the ability of LLMs to incorporate user preferences, achieving the new state-of-the-art for open source models on the NLSI task.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Video2Roleplay: A Multimodal Dataset and Framework for Video-Guided Role-playing Agents
poster

Video2Roleplay: A Multimodal Dataset and Framework for Video-Guided Role-playing Agents

EMNLP 2025

+4
Yawei Luo and 6 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved